
Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.
Clear["Global`*⋆"]

Note: Mathematica has a section of commands dealing with graphs, but there seem to be
some kinks in there. See problem 7.
Get[
"https:/∕/∕raw.githubusercontent.com/∕szhorvat/∕IGraphM/∕master/∕IGInstaller

.m"]
The currently installed versions of IGraph/∕M are: {}

Installing IGraph/∕M is complete: Paclet[IGraphM, 0.3.110, <>].

It can now be loaded using the command Get["IGraphM`"].

Get["IGraphM`"]

IGraph/∕M 0.3.110 (April 22, 2019)

Evaluate IGDocumentation[] to get started.

General comment. When I was putting the problem section together, I thought it was thor-
ough. I made property lists of both EdgeCapacity and EdgeWeight, but find that I cannot
always use them both.

1 - 6 Cut sets, capacity
Find T and cap (S, T) for:

1. Figure 498, S = {1, 2, 4, 5}

fig498 = Graph[{1 ' 2, 2 ' 3, 3 ' 6, 4 ' 5, 5 ' 6, 1 ' 4, 5 ' 2, 3 ' 5},
VertexLabels → "Name", VertexCoordinates -−>
{{-−2, -−1}, {0, 0}, {2.5, 0}, {4.5, -−1}, {0, -−2}, {2.5, -−2}},

EdgeCapacity → {20, 11, 13, 7, 3, 10, 4, 5},
EdgeWeight → {8, 11, 11, 6, 3, 6, 3, 0},
Epilog → {{Text[Style["s", Medium], {-−2.15, -−1}]},

{Red, Text[Style["10, 6", Medium], {-−1.45, -−1.5}]},
{Red, Text[Style["5, 0", Medium], {2.75, -−1}]},
{Red, Text[Style["20, 8", Medium], {-−1.4, -−0.5}]},
{Red, Text[Style["3, 3", Medium], {3.55, -−1.7}]},
{Text[Style["t", Medium], {4.65, -−1}]},
{Red, Text[Style["4, 3", Medium], {1.2, -−0.75}]},
{Red, Text[Style["11, 11", Medium], {1.25, 0.1}]},
{Red, Text[Style["7, 6", Medium], {1.25, -−2.15}]},
{Red, Text[Style["13, 11", Medium], {3.95, -−0.5}]}, {Dashed, Thick,
RGBColor[0.3, 0.7, 0.95], Circle[{6, 4}, 6.5, {π + 0.6, π + 1.2}]},

{Text[Style["Cut", Medium], {0.7, 0.5}]}},
ImageSize → 400, ImagePadding → 35]

A brief intuitive analysis will be enough. The problem description states which vertices will
belong to the S region. The cut must come immediately downstream of these. So the down-
stream edges for analysis are 2!3 and 5!6. The capacity numbers for those two edges are
11, and 3, which add up to 14. The T region comprises those vertices which are not in the S
region, here 3 and 6.

3. Figure 498, S = {1, 2, 3}

By the problem description, The S region contains the vertices 1, 2, and 3. So the first down-
stream edges of the cut will be 1!4, 3!6, and 3!5. The edge 3!5 does not look like it is
oriented exactly “downstream”, but it is not upstream, so it must be downstream. The T
region comprises vertices 4, 5, and 6. The capacity numbers for these three edges are 10, 13
and 5, which sum to 28.

5. Figure 499, S = {1, 2, 4, 5}

2 23.6 Flows in Networks 991.nb

fig499 =
Graph[{1 ' 2, 2 ' 3, 6 ' 3, 4 ' 5, 5 ' 6, 1 ' 4, 5 ' 2, 5 ' 3, 3 ' 7, 6 ' 7},
VertexLabels → "Name", VertexCoordinates -−> {{-−2, -−1}, {0, 0},

{2.5, 0}, {3.75, -−2}, {-−0.5, -−2}, {1.25, -−2}, {5.5, -−1}},
EdgeCapacity → {8, 8, 2, 6, 4, 7, 6, 4, 10, 6},
EdgeWeight → {4, 5, 2, 5, 2, 5, 1, 2, 8, 1},
Epilog → {{Text[Style["s", Medium], {-−2.15, -−1}]},

{Red, Text[Style["7, 5", Medium], {-−1.7, -−1.5}]},
{Red, Text[Style["2, 1", Medium], {2.8, -−1}]},
{Red, Text[Style["8, 4", Medium], {-−1.4, -−0.5}]},
{Red, Text[Style["6, 1", Medium], {4.75, -−1.7}]},
{Text[Style["t", Medium], {5.65, -−1}]},
{Red, Text[Style["6, 1", Medium], {0.3, -−1}]},
{Red, Text[Style["8, 5", Medium], {1.25, 0.15}]},
{Red, Text[Style["6, 5", Medium], {0.3, -−2.15}]},
{Red, Text[Style["10, 8", Medium], {4.55, -−0.5}]},
{Red, Text[Style["4, 2", Medium], {1.55, -−1}]},
{Red, Text[Style["4, 2", Medium], {2.5, -−2.15}]},
Dashed, Thick, RGBColor[0.3, 0.7, 0.95],
Circle[{6, 2}, 5.8, {π, π + 1.2}]}, ImagePadding → 15]

Now I will look at this one. The S region as given is 1, 2, 4, 5, which means the cut will
cross 2!3, 5!3, and 5!6. The T region will have the vertices 3, 6, and 7. All of the cut
edges are downstream edges. The total capacity in this case will be 16.

7 - 8 Minimum cut set
Find a minimum cut set and its capacity for the network:

7. In figure 499.

Clear["Global`*⋆"]

There are two places that make this choice a tie, and therefore weaken the problem. The
text wants to cut 1!2 and 4!5, which is fine since it gives cap (S, T) of 14, the smallest
available. But consider that allowing for 6!3 to be null due to direction, cutting 5!6 and
3!7 would also give 14. This is what the IGMinimumCut function below does. It makes the
choice the text doesn’t. IGMC only responds to weighted edges though, so I have to call the
EdgeCapacity by the name of EdgeWeight. Where did this IGMinimumCut function come
from? It seems there are a number of serious bugs in Mathematica’s graph faculties, continu-
ing through ver 11, and talked about at places like https://mathematica.stackexchange.com/ques-
tions/173936/s-t-min-cut-in-a-graph. That is where I got the add-ons referred to by the “Gets” at
the top of the notebook. Author: Szabolcs. Looking at the below, I notice one interesting
thing, which is that minimum edge cut functions do not need to know the coordinates of
vertices in order to determine if they are upstream or downstream.

23.6 Flows in Networks 991.nb 3

There are two places that make this choice a tie, and therefore weaken the problem. The
text wants to cut 1!2 and 4!5, which is fine since it gives cap (S, T) of 14, the smallest
available. But consider that allowing for 6!3 to be null due to direction, cutting 5!6 and
3!7 would also give 14. This is what the IGMinimumCut function below does. It makes the
choice the text doesn’t. IGMC only responds to weighted edges though, so I have to call the
EdgeCapacity by the name of EdgeWeight. Where did this IGMinimumCut function come
from? It seems there are a number of serious bugs in Mathematica’s graph faculties, continu-
ing through ver 11, and talked about at places like https://mathematica.stackexchange.com/ques-
tions/173936/s-t-min-cut-in-a-graph. That is where I got the add-ons referred to by the “Gets” at
the top of the notebook. Author: Szabolcs. Looking at the below, I notice one interesting
thing, which is that minimum edge cut functions do not need to know the coordinates of
vertices in order to determine if they are upstream or downstream.
IGMinimumCut[
Graph[{1 ' 2, 2 ' 3, 6 ' 3, 4 ' 5, 5 ' 6, 1 ' 4, 5 ' 2, 5 ' 3, 3 ' 7, 6 ' 7},
EdgeWeight → {8, 8, 2, 6, 4, 7, 6, 4, 10, 6}], 1, 7]

{5 ' 6, 3 ' 7}

IGMinimumCutValue[
Graph[{1 ' 2, 2 ' 3, 6 ' 3, 4 ' 5, 5 ' 6, 1 ' 4, 5 ' 2, 5 ' 3, 3 ' 7, 6 ' 7},
EdgeWeight → {8, 8, 2, 6, 4, 7, 6, 4, 10, 6}], 1, 7]

14.

9. Why are backward edges not considered in the definition of the capacity of a cut set?

12 - 15 Flow augmenting paths
Find flow augmenting paths:

13. Problem represented by a diagram.

Clear["Global`*⋆"]

I start with a plot which resembles the associated figure in the text. However I feel now that
the level of detail is more trouble to assemble than it is worth. As for augmenting paths, I
looked for and did not find an algorithm. It seems the best one would be Dinic, next best
Edmonds-Karp. If anyone has written Mathematica ports of these, they are not easy to find.

4 23.6 Flows in Networks 991.nb

g13 = Graph[
{2 ' 4, 4 ' 5, 3 ' 5, 1 ' 3, 1 ' 2, 2 ' 5, 4 ' 3}, VertexLabels → "Name",
VertexCoordinates -−> {{0, 0}, {2, 0}, {2, -−2}, {0, -−2}, {-−1.5, -−1}},
EdgeCapacity → {10, 4, 12, 6, 8, 4, 14},
EdgeWeight → {2, 2, 3, 2, 3, 1, 1},
Epilog → {{Text[Style["s", Medium], {-−1.6, -−1}]},

{Red, Text[Style["6, 2", Medium], {-−1, -−1.5}]},
{Red, Text[Style["4, 2", Medium], {2.2, -−1}]},
{Red, Text[Style["8, 3", Medium], {-−1, -−0.5}]},
{Red, Text[Style["14, 1", Medium], {0.5, -−1.3}]},
{Text[Style["t", Medium], {2.1, -−2}]},
{Red, Text[Style["4, 1", Medium], {0.8, -−0.6}]},
{Red, Text[Style["10, 2", Medium], {1, 0.1}]},
{Red, Text[Style["12, 3", Medium], {1, -−2.1}]}},

ImageSize → 300, ImagePadding → 20]

I execute an IG command to double check the Mathematica command.
IGMaximumFlowValue[Graph[{2 ' 4, 4 ' 5, 3 ' 5, 1 ' 3, 1 ' 2, 2 ' 5, 4 ' 3},

VertexCoordinates -−> {{0, 0}, {2, 0}, {2, -−2}, {0, -−2}, {-−1.5, -−1}},
EdgeCapacity → {10, 4, 12, 6, 8, 4, 14},
EdgeWeight → {2, 2, 3, 2, 3, 1, 1}], 1, 5]

14.

I run the Mathematica command to find out the maximum flow. This is just a sum of the
EdgeWeights, indicating, I guess, that under assumed ideal conditions that much flow
would go through.
gdc =
FindMaximumFlow[Graph[{2 ' 4, 4 ' 5, 3 ' 5, 1 ' 3, 1 ' 2, 2 ' 5, 4 ' 3},

EdgeCapacity → {10, 4, 12, 6, 8, 4, 14},
EdgeWeight → {2, 2, 3, 2, 3, 1, 1}], 1, 5, "FlowValue"]

14

Then I run the command again, but this time I specify an EdgeList. Even though it is still a
FindMaximum command, the edges that are delivered seem to be the ones that can be
effective. One edge is dropped.

23.6 Flows in Networks 991.nb 5

gdd =
FindMaximumFlow[Graph[{2 ' 4, 4 ' 5, 3 ' 5, 1 ' 3, 1 ' 2, 2 ' 5, 4 ' 3},

EdgeCapacity → {10, 4, 12, 6, 8, 4, 14},
EdgeWeight → {2, 2, 3, 2, 3, 1, 1}], 1, 5, "EdgeList"]

{2 ' 4, 2 ' 5, 4 ' 5, 3 ' 5, 1 ' 3, 1 ' 2}

I back up and look at the difference between edge capacities and edge weights. These residu-
als are what are potential contributors to augmenting paths. But they will only be applica-
ble for effective edges.
ec = {10, 4, 12, 6, 8, 4, 14};
ew = {2, 2, 3, 2, 3, 1, 1};

residuals = Flatten[Table[{ec[[n]] -− ew[[n]]}, {n, 1, 7}]]

{8, 2, 9, 4, 5, 3, 13}

I get a graph of the outcome, using the residuals on their own respective edges.
gdg = Graph[{Labeled[2 ' 4, "8"], Labeled[2 ' 5, "3"], Labeled[4 ' 5, "2"],

Labeled[3 ' 5, "9"], Labeled[1 ' 3, "4"], Labeled[1 ' 2, "5"]},
VertexLabels → "Name", ImageSize → 170, ImagePadding → 20]

The edge values and minimum path flows in the above graph match the answer in the
text. The total of the three effective paths is 9, which, however, the text does not specifi-
cally state.

15. Problem represented by a diagram.

I do this problem in the same way as the last, though without clarifying notes.

6 23.6 Flows in Networks 991.nb

g15 = Graph[
{2 ' 5, 4 ' 2, 4 ' 3, 1 ' 2, 3 ' 5, 1 ' 3, 1 ' 4}, VertexLabels → "Name",
VertexCoordinates -−> {{0, 0}, {3, -−1}, {1.4, -−1}, {0, -−2}, {-−1.5, -−1}},
EdgeCapacity → {8, 5, 6, 4, 1, 3, 10}, EdgeWeight → {5, 3, 0, 2, 1, 1, 3},
Epilog → {{Text[Style["s", Medium], {-−1.6, -−1}]},

{Red, Text[Style["3, 1", Medium], {-−1, -−1.5}]},
{Red, Text[Style["10, 3", Medium], {-−0.5, -−0.9}]},
{Red, Text[Style["4, 2", Medium], {-−1, -−0.5}]},
{Red, Text[Style["6, 0", Medium], {0.5, -−1.5}]},
{Text[Style["t", Medium], {3.1, -−1}]},
{Red, Text[Style["5, 3", Medium], {0.6, -−0.6}]},
{Red, Text[Style["8, 5", Medium], {1.5, -−0.4}]},
{Red, Text[Style["12, 3", Medium], {1, -−1.8}]}},

ImageSize → 350, ImagePadding → 20]

IGMaximumFlowValue[Graph[
{2 ' 5, 4 ' 2, 4 ' 3, 1 ' 2, 3 ' 5, 1 ' 3, 1 ' 4}, VertexLabels → "Name",
VertexCoordinates -−> {{0, 0}, {3, -−1}, {1.4, -−1}, {0, -−2}, {-−1.5, -−1}},
EdgeCapacity → {8, 5, 6, 4, 1, 3, 10},
EdgeWeight → {5, 3, 0, 2, 1, 1, 3}], 1, 5]

9.

gdc15 = FindMaximumFlow[Graph[
{2 ' 5, 4 ' 2, 4 ' 3, 1 ' 2, 3 ' 5, 1 ' 3, 1 ' 4}, VertexLabels → "Name",
VertexCoordinates -−> {{0, 0}, {3, -−1}, {1.4, -−1}, {0, -−2}, {-−1.5, -−1}},
EdgeCapacity → {8, 5, 6, 4, 1, 3, 10},
EdgeWeight → {5, 3, 0, 2, 1, 1, 3}], 1, 5]

9

gdd15 = FindMaximumFlow[Graph[
{2 ' 5, 4 ' 2, 4 ' 3, 1 ' 2, 3 ' 5, 1 ' 3, 1 ' 4}, VertexLabels → "Name",
VertexCoordinates -−> {{0, 0}, {3, -−1}, {1.4, -−1}, {0, -−2}, {-−1.5, -−1}},
EdgeCapacity → {8, 5, 6, 4, 1, 3, 10},
EdgeWeight → {5, 3, 0, 2, 1, 1, 3}], 1, 5, "EdgeList"]

{2 ' 5, 4 ' 2, 3 ' 5, 1 ' 2, 1 ' 3, 1 ' 4}

23.6 Flows in Networks 991.nb 7

ec = {8, 5, 6, 4, 1, 3, 10};
ew = {5, 3, 0, 2, 1, 1, 3};
residuals = Flatten[Table[{ec[[n]] -− ew[[n]]}, {n, 1, 7}]]

{3, 2, 6, 2, 0, 2, 7}

gdg15 =
Graph[{Labeled[2 ' 5, "3"], Labeled[4 ' 2, "2"], Labeled[3 ' 5, "0"],

Labeled[1 ' 2, "2"], Labeled[1 ' 3, "2"], Labeled[1 ' 4, "7"]},
VertexLabels → "Name", ImageSize → 170, ImagePadding → 20]

The edges values and minimum path flows in the above graph match the answer in the
text (except the “etc.” in the text avoids listing the 0 flow path. The total of the two left
side effective paths (upstream of vertex 2) is 4, which, however, is incompatible with the
maximum allowed through 2!5, which is 3, so the answer must be 3. The total is some-
thing the text answer does not address.

16 - 19 Maximum flow
Find the maximum flow by inspection:

17. Problem represented by a diagram.

Clear["Global`*⋆"]

For these maximum flow problems, it is edge capacity that controls the flow. That is okay
for Mathematica, because it knows how to use the EdgeCapacity property.

8 23.6 Flows in Networks 991.nb

g17 = Graph[{1 ' 3, 3 ' 5, 2 ' 4, 4 ' 6, 1 ' 2, 4 ' 3, 6 ' 5, 1 ' 4, 4 ' 5},
VertexLabels → "Name", VertexCoordinates →
{{-−2, 0}, {0, 0}, {2, 0}, {-−2, -−2}, {0, -−2}, {2, -−2}},

EdgeCapacity → {8, 11, 4, 4, 5, 2, 13, 6, 5},
EdgeWeight → {5, 7, 2, 1, 2, 2, 9, 3, 2},
Epilog → {{Text[Style["s", Medium], {-−2.12, 0}]},

{Red, Text[Style["4, 2", Medium], {-−1, -−2.1}]},
{Red, Text[Style["13, 9", Medium], {2.22, -−1}]},
{Red, Text[Style["6, 3", Medium], {-−1, -−0.8}]},
{Red, Text[Style["5, 2", Medium], {1.1, -−1.2}]},
{Text[Style["t", Medium], {2.1, -−2}]},
{Red, Text[Style["2, 2", Medium], {0.2, -−0.6}]},
{Red, Text[Style["11, 7", Medium], {1, 0.1}]},
{Red, Text[Style["4, 1", Medium], {1, -−2.1}]},
{Red, Text[Style["8, 5", Medium], {-−1, 0.1}]},
{Red, Text[Style["5, 2", Medium], {-−2.2, -−1}]}},

ImageSize → 300, ImagePadding → 20]

gda17 = Graph[{1 ' 3, 3 ' 5, 2 ' 4, 4 ' 6, 1 ' 2, 4 ' 3, 6 ' 5, 1 ' 4, 4 ' 5},
EdgeCapacity → {8, 11, 4, 4, 5, 2, 13, 6, 5},
EdgeWeight → {5, 7, 2, 1, 2, 2, 9, 3, 2}];

Mathematica is set up for a fall on the next cell. Only three edges survive the culling. This is
due to the yellow comment below.
gdc17 = FindMaximumFlow[

Graph[{1 ' 3, 3 ' 5, 2 ' 4, 4 ' 6, 1 ' 2, 4 ' 3, 6 ' 5, 1 ' 4, 4 ' 5},
EdgeCapacity → {8, 11, 4, 4, 5, 2, 13, 6, 5},
EdgeWeight → {5, 7, 2, 1, 2, 2, 9, 3, 2}], 1, 6, "EdgeList"]

{1 ' 2, 2 ' 4, 4 ' 6}

ec = {8, 11, 4, 4, 5, 2, 13, 6, 5};
ew = {5, 7, 2, 1, 2, 2, 9, 3, 2};
residuals = Flatten[Table[{ec[[n]] -− ew[[n]]}, {n, 1, 9}]]

{3, 4, 2, 3, 3, 0, 4, 3, 3}

23.6 Flows in Networks 991.nb 9

gdc17 = FindMaximumFlow[
Graph[{1 ' 3, 3 ' 5, 2 ' 4, 4 ' 6, 1 ' 2, 4 ' 3, 6 ' 5, 1 ' 4, 4 ' 5},
EdgeCapacity → {8, 11, 4, 4, 5, 2, 13, 6, 5},
EdgeWeight → {5, 7, 2, 1, 2, 2, 9, 3, 2}], 1, 6]

4

IGEdgeProp[EdgeCapacity][gda17]

{8, 11, 4, 4, 5, 2, 13, 6, 5}

IGMaximumFlowValue[
Graph[{1 ' 3, 3 ' 5, 2 ' 4, 4 ' 6, 1 ' 2, 4 ' 3, 6 ' 5, 1 ' 4, 4 ' 5},
VertexLabels → "Name", EdgeCapacity → {8, 11, 4, 4, 5, 2, 13, 6, 5},
EdgeWeight → {5, 7, 2, 1, 2, 2, 9, 3, 2}], 1, 6]

4.

IGMaximumFlowValue[gda17, 1, 6]

4.

The diagram that IG produces tells the tale. Only one pipe leads into vertex 6, and it has
EdgeCapacity 4. So the max flow has to be 4.
IGMaximumFlow[
Graph[{Labeled[1 ' 3, "8"], Labeled[3 ' 5, "11"], Labeled[2 ' 4, "4"],

Labeled[4 ' 6, "4"], Labeled[1 ' 2, "5"], Labeled[4 ' 3, "2"],
Labeled[6 ' 5, "13"], Labeled[1 ' 4, "6"], Labeled[4 ' 5, "5"]},

VertexLabels → "Name", EdgeCapacity → {8, 11, 4, 4, 5, 2, 13, 6, 5},
EdgeWeight → {8, 11, 4, 4, 5, 2, 13, 6, 5}, ImageSize → 125], 1, 6]

IGMaximumFlow , 1, 6

10 23.6 Flows in Networks 991.nb

flowMat = IGMaximumFlowMatrix[gda17, 1, 6]

SparseArray Specifiedelements: 9
Dimensions: {6, 6}



MatrixForm[flowMat]
0. 0. 0. 4. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 4. 0.
0. 0. 0. 0. 0. 4.
0. 0. 0. 0. 0. 0.

Taking account of the note below in yellow, the new flow in the following diagram is obvi-
ously changed to 17. And the only change to edges was Labeled[5!6,”13”] instead of
Labeled[6!5,”13”].
IGMaximumFlow[
Graph[{Labeled[1 ' 3, "8"], Labeled[3 ' 5, "11"], Labeled[2 ' 4, "4"],

Labeled[4 ' 6, "4"], Labeled[1 ' 2, "5"], Labeled[4 ' 3, "2"],
Labeled[5 ' 6, "13"], Labeled[1 ' 4, "6"], Labeled[4 ' 5, "5"]},

VertexLabels → "Name", EdgeCapacity → {8, 11, 4, 4, 5, 2, 13, 6, 5},
EdgeWeight → {8, 11, 4, 4, 5, 2, 13, 6, 5}, ImageSize → 125], 1, 6]

IGMaximumFlow , 1, 6

gdg17 =
Graph[{Labeled[1 ' 2, "3"], Labeled[2 ' 4, "2"], Labeled[4 ' 6, "3"]},
VertexLabels → "Name", ImageSize → 170, ImagePadding → 20]

The answer in the yellow cell above does not match the answer in the text. However, I
think there is an error in the problem’s figure, or in the text answer. Consider the full text
answer: “Subscript[f, 13] = f35=8, f14= f45 =5, f12 = f24 = f46 =4, f56 =13, f=4+13 =
17, f = 17 is unique.” The subscript order in 6 of 7 cases of fij matches the arrowhead
position in the figure. But in f56 it is reversed. This is suspicious. So if I write

23.6 Flows in Networks 991.nb 11

The answer in the yellow cell above does not match the answer in the text. However, I
think there is an error in the problem’s figure, or in the text answer. Consider the full text
answer: “Subscript[f, 13] = f35=8, f14= f45 =5, f12 = f24 = f46 =4, f56 =13, f=4+13 =
17, f = 17 is unique.” The subscript order in 6 of 7 cases of fij matches the arrowhead
position in the figure. But in f56 it is reversed. This is suspicious. So if I write

gdc17 = FindMaximumFlow[
Graph[{1 ' 3, 3 ' 5, 2 ' 4, 4 ' 6, 1 ' 2, 4 ' 3, 5 ' 6, 1 ' 4, 4 ' 5},
EdgeCapacity → {8, 11, 4, 4, 5, 2, 13, 6, 5},
EdgeWeight → {5, 7, 2, 1, 2, 2, 9, 3, 2}], 1, 6]

17

with the edge 5!6 matching the text answer, I get the text answer.

19. Problem represented by a diagram.

g19 = Graph[
{1 ' 2, 2 ' 4, 3 ' 5, 4 ' 5, 1 ' 3, 3 ' 2, 2 ' 5}, VertexLabels → "Name",
VertexCoordinates → {{-−2, 0}, {0, 0}, {2, 0}, {-−1, -−2}, {1, -−2}},
EdgeCapacity → {10, 8, 3, 7, 5, 6, 8}, EdgeWeight → {7, 4, 1, 4, 3, 2, 5},
Epilog → {{Text[Style["s", Medium], {-−2.12, 0}]},

{Red, Text[Style["3, 1", Medium], {0, -−2.15}]},
{Red, Text[Style["7, 4", Medium], {1.75, -−1}]},
{Red, Text[Style["6, 2", Medium], {-−0.6, -−0.8}]},
{Text[Style["t", Medium], {1.1, -−2}]},
{Red, Text[Style["8, 5", Medium], {0.5, -−0.6}]},
{Red, Text[Style["8, 4", Medium], {1, 0.1}]},
{Red, Text[Style["10, 7", Medium], {-−1, 0.1}]},
{Red, Text[Style["5, 3", Medium], {-−1.7, -−1}]}},

ImageSize → 300, ImagePadding → 20]

gdc19 = FindMaximumFlow[Graph[
{1 ' 2, 2 ' 4, 3 ' 5, 4 ' 5, 1 ' 3, 3 ' 2, 2 ' 5}, VertexLabels → "Name",
VertexCoordinates → {{-−2, 0}, {0, 0}, {2, 0}, {-−1, -−2}, {1, -−2}},
EdgeCapacity → {10, 8, 3, 7, 5, 6, 8},
EdgeWeight → {7, 4, 1, 4, 3, 2, 5}], 1, 5]

15

The answer in the cell above matches the answer in the text. However, this was not done in
the accepted way, so maybe I should expand.

12 23.6 Flows in Networks 991.nb

The answer in the cell above matches the answer in the text. However, this was not done in
the accepted way, so maybe I should expand.
gdc19 = FindMaximumFlow[Graph[

{1 ' 2, 2 ' 4, 3 ' 5, 4 ' 5, 1 ' 3, 3 ' 2, 2 ' 5}, VertexLabels → "Name",
VertexCoordinates → {{-−2, 0}, {0, 0}, {2, 0}, {-−1, -−2}, {1, -−2}},
EdgeCapacity → {10, 8, 3, 7, 5, 6, 8},
EdgeWeight → {7, 4, 1, 4, 3, 2, 5}], 1, 5, "EdgeList"]

{1 ' 2, 1 ' 3, 2 ' 4, 2 ' 5, 4 ' 5, 3 ' 5, 3 ' 2}

This gives me a hint. No edges were removed by the FMF command, so they must all be
effective, hence the green cells stands. If I ask for OptimumFlowData I get contributing
edges, vertices, and flow value.
gdc19 = FindMaximumFlow[Graph[

{1 ' 2, 2 ' 4, 3 ' 5, 4 ' 5, 1 ' 3, 3 ' 2, 2 ' 5}, VertexLabels → "Name",
VertexCoordinates → {{-−2, 0}, {0, 0}, {2, 0}, {-−1, -−2}, {1, -−2}},
EdgeCapacity → {10, 8, 3, 7, 5, 6, 8},
EdgeWeight → {7, 4, 1, 4, 3, 2, 5}], 1, 5, "OptimumFlowData"]

OptimumFlowData Flowvalue: 15 

I can try out the IG versions of these commands. (Treating now 2!5 and 3!2 as backward
edges)
IGMaximumFlow[
Graph[{Labeled[1 ' 2, "10"], Labeled[2 ' 4, "8"], Labeled[3 ' 5, "3"],

Labeled[4 ' 5, "7"], Labeled[1 ' 3, "5"], Labeled[3 ' 2, "2"],
Labeled[2 ' 5, "5"]}, VertexLabels → "Name",

VertexCoordinates → {{-−2, 0}, {0, 0}, {2, 0}, {-−1, -−2}, {1, -−2}},
EdgeCapacity → {10, 8, 3, 7, 5, 6, 8},
EdgeWeight → {7, 4, 1, 4, 3, 2, 5}, ImageSize → 200], 1, 5]

IGMaximumFlow , 1, 5

The IG commands are not very helpful today. I can’t even get the flow number by using
IGMaximumFlowValue.

23.6 Flows in Networks 991.nb 13

IGMaximumFlowValue[Graph[
{1 ' 2, 2 ' 4, 3 ' 5, 4 ' 5, 1 ' 3, 3 ' 2, 2 ' 5}, VertexLabels → "Name",
VertexCoordinates → {{-−2, 0}, {0, 0}, {2, 0}, {-−1, -−2}, {1, -−2}},
EdgeCapacity → {10, 8, 3, 7, 5, 6, 8},
EdgeWeight → {7, 4, 1, 4, 3, 2, 5}], 1, 5]

IGMaximumFlowValue , 1, 5

This problem has me confused. I can’t claim that the text answer is wrong, because the text,
Mathematica, and IG agree that the max flow is 15. For both edges 3!2 and 2!5 the edge
weight is used (reverse edge?), whereas 1!3 is a forward edge, based on the
EdgeCapacity property being used. For now I have to think that what makes 2!5 a
reverve edge is not its arrowhead, but the fact that it is split off at vertex 2. The text, p. 997,
defines a backward edge as one directed from t to s. That appears not to be true in this case.

14 23.6 Flows in Networks 991.nb

